Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Macromol Rapid Commun ; : e2400022, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704741

RESUMEN

The preparation of self-healing polyurethane elastomers (PUEs) incorporating dynamic bonds is of considerable practical significance. However, developing a PUE with outstanding mechanical properties and high self-healing efficiency poses a significant challenge. Herein, this work has successfully developed a series of self-healing PUEs with various outstanding properties through rational molecular design. These PUEs incorporate m-xylylene diisocyanate and reversible dimethylglyoxime as hard segment, along with polytetramethylene ether glycol as soft segment. A significant amount of dynamic oxime-carbamate and hydrogen bonds are formed in hard segment. The microphase separated structure of the PUEs enables them to be colorless with a transparency of >90%. Owing to the chemical composition and multiple dynamic interactions, the PUEs are endowed with ultra-high tensile strength of 34.5 MPa, satisfactory toughness of 53.9 MJ m-3, and great elastic recovery both at low and high strains. The movement of polymer molecular chains and the dynamic reversible interactions render a self-healing efficiency of 101% at 70 °C. In addition, this self-healing polyurethane could still maintain high mechanical properties after recycling. This study provides a design strategy for the preparation of a comprehensive polyurethane with superior overall performance, which holds wide application prospects in the fields of flexible displays and solar cells.

2.
Angew Chem Int Ed Engl ; : e202404660, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714487

RESUMEN

Oxygen vacancies (OV) in nonmetallic plasmonic photocatalysts can decrease the energy barrier for CO2 reduction, boosting C1 intermediate production for potential C2 formation. However, their susceptibility to oxidation weakens C1 intermediate adsorption. Herein we proposed a "photoelectron injection" strategy to safeguard OV in W18O49 by creating a W18O49/ZIS (W/Z) plasmonic photocatalyst. Moreover, photoelectrons contribute to the local multi-electron environment of W18O49, enhancing the intrinsic excitation of its hot electrons with extended lifetimes, as confirmed by in-situ XPS and femtosecond transient absorption analysis. Density functional theory calculations revealed that W/Z with Ov enhances CO2 adsorption, activating *CO production, while reducing the energy barrier for *COH production (0.054 eV) and subsequent *CO-COH coupling (0.574 eV). Successive hydrogenation revealed that the free energy for *CH2CH2 hydrogenation (0.108 eV) was lower than that for *CH2CH2 desorption for C2H4 production (0.277 eV), favouring C2H6 production. Consequently, W/Z achieves an efficient C2H6 activity of 653.6 µmol g-1 h-1 under visible light, with an exceptionally high selectivity of 90.6%. This work offers a new strategy for the rational design of plasmonic photocatalysts with high selectivity for C2+ products.

3.
Proc Natl Acad Sci U S A ; 121(15): e2318041121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38568976

RESUMEN

Stable matching of neurotransmitters with their receptors is fundamental to synapse function and reliable communication in neural circuits. Presynaptic neurotransmitters regulate the stabilization of postsynaptic transmitter receptors. Whether postsynaptic receptors regulate stabilization of presynaptic transmitters has received less attention. Here, we show that blockade of endogenous postsynaptic acetylcholine receptors (AChR) at the neuromuscular junction destabilizes the cholinergic phenotype in motor neurons and stabilizes an earlier, developmentally transient glutamatergic phenotype. Further, expression of exogenous postsynaptic gamma-aminobutyric acid type A receptors (GABAA receptors) in muscle cells stabilizes an earlier, developmentally transient GABAergic motor neuron phenotype. Both AChR and GABAA receptors are linked to presynaptic neurons through transsynaptic bridges. Knockdown of specific components of these transsynaptic bridges prevents stabilization of the cholinergic or GABAergic phenotypes. Bidirectional communication can enforce a match between transmitter and receptor and ensure the fidelity of synaptic transmission. Our findings suggest a potential role of dysfunctional transmitter receptors in neurological disorders that involve the loss of the presynaptic transmitter.


Asunto(s)
Receptores Colinérgicos , Sinapsis , Sinapsis/metabolismo , Receptores Colinérgicos/metabolismo , Transmisión Sináptica/fisiología , Neuronas Motoras/metabolismo , Receptores de GABA-A/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Neurotransmisores/metabolismo , Colinérgicos , Receptores Presinapticos
4.
Sci Total Environ ; 926: 172011, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38561128

RESUMEN

Coal gasification slag (CGS) contains variable amounts of heavy metals, which can negatively impact the environment. The mineral composition, element distribution, occurrence, and leaching characteristics of heavy metals in coal gasification coarse slag (CGCS) and coal gasification fine slag (CGFS) are studied to explain the leaching behavior of heavy metals in CGS. The movable components of heavy metals in CGFS (0.06 %-63.03 %) are significantly higher than those in CGCS (0 %-18.72 %). Leaching Environmental Assessment Framework 1313 data shows that heavy metals Zn, Cr, Cd, As, Pb, Ni, and Cu exhibit high leaching rates at low pH conditions, with Zn leaching concentrations as high as 2.11 mg/L at pH 2. Zn, Cr, and As exhibit obvious amphoteric leaching characteristics, and the leaching concentration of As at high pH (1.34 mg/L) even exceeds that at low pH (1.31 mg/L). Except for Cu, all heavy metals in CGS exceed the class III groundwater standard in some cases. Therefore, evaluation is needed before resource utilization of CGS due to potential leaching of some heavy metals.

5.
Plants (Basel) ; 13(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38674484

RESUMEN

Trait-based approaches are increasingly used to understand crop yield improvement, although they have not been widely applied to anatomical traits. Little is known about the relationships between root and leaf anatomy and yield in wheat. We selected 20 genotypes that have been widely planted in Luoyang, in the major wheat-producing area of China, to explore these relationships. A field study was performed to measure the yields and yield components of the genotypes. Root and leaf samples were collected at anthesis to measure the anatomical traits relevant to carbon allocation and water transport. Yield was negatively correlated with cross-sectional root cortex area, indicating that reduced root cortical tissue and therefore reduced carbon investment have contributed to yield improvement in this region. Yield was positively correlated with root xylem area, suggesting that a higher water transport capacity has also contributed to increased yields in this study. The area of the leaf veins did not significantly correlate with yield, showing that the high-yield genotypes did not have larger veins, but they may have had a conservative water use strategy, with tight regulation of water loss from the leaves. This study demonstrates that breeding for higher yields in this region has changed wheat's anatomical traits, reducing the roots' cortical tissue and increasing the roots' xylem investment.

6.
Syst Parasitol ; 101(3): 33, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647718

RESUMEN

The mitochondrial (mt) genome can provide data for phylogenetic analyses and evolutionary biology. Herein, we sequenced and annotated the complete mt genome of Ergasilus anchoratus. This mt genome was 13852 bp long and comprised 13 protein-coding genes (PCGs), 22 tRNAs and 2 rRNAs. All PCGs used the standard ATN start codons and complete TAA/TAG termination codons. A majority of tRNA genes exhibited standard cloverleaf secondary structures, with the exception of one tRNA that lacked the TψC arm (trnC), and three tRNAs that lacked the DHU arm (trnR, trnS1 and trnS2). Phylogenetic analyses conducted using Bayesian inference (BI) and maximum likelihood (ML) methods both supported Ergasilidae as a monophyletic family forming a sister group to Lernaea cyprinacea and Paracyclopina nana. It also supported the monophyly of orders Calanoida, Cyclopoida, and Siphonostomatoida; and the monophyly of families Harpacticidae, Ergasilidae, Diaptomidae, and Calanidae. The gene orders of E. anchoratus and Sinergasilus undulatus were identical, which represents the first instance of two identical gene orders in copepods. More mt genomes are needed to better understand the phylogenetic relationships within Copepoda in the future.


Asunto(s)
Copépodos , Genoma Mitocondrial , Filogenia , Animales , Genoma Mitocondrial/genética , Copépodos/genética , Copépodos/clasificación
7.
Front Surg ; 11: 1278421, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38486794

RESUMEN

Calcium sulfate and calcium sulfate-based biomaterials have been widely used in non-load-bearing bone defects for hundreds of years due to their superior biocompatibility, biodegradability, and non-toxicity. However, lower compressive strength and rapid degradation rate are the main limitations in clinical applications. Excessive absorption causes a sharp increase in sulfate ion and calcium ion concentrations around the bone defect site, resulting in delayed wound healing and hypercalcemia. In addition, the space between calcium sulfate and the host bone, resulting from excessively rapid absorption, has adverse effects on bone healing or fusion techniques. This issue has been recognized and addressed. The lack of sufficient mechanical strength makes it challenging to use calcium sulfate and calcium sulfate-based biomaterials in load-bearing areas. To overcome these defects, the introduction of various inorganic additives, such as calcium carbonate, calcium phosphate, and calcium silicate, into calcium sulfate is an effective measure. Inorganic materials with different physical and chemical properties can greatly improve the properties of calcium sulfate composites. For example, the hydrolysis products of calcium carbonate are alkaline substances that can buffer the acidic environment caused by the degradation of calcium sulfate; calcium phosphate has poor degradation, which can effectively avoid the excessive absorption of calcium sulfate; and calcium silicate can promote the compressive strength and stimulate new bone formation. The purpose of this review is to review the poor properties of calcium sulfate and its complications in clinical application and to explore the effect of various inorganic additives on the physicochemical properties and biological properties of calcium sulfate.

8.
Science ; 383(6688): 1252-1259, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38484078

RESUMEN

Overgeneralization of fear to harmless situations is a core feature of anxiety disorders resulting from acute stress, yet the mechanisms by which fear becomes generalized are poorly understood. In this study, we show that generalized fear in mice results from a transmitter switch from glutamate to γ-aminobutyric acid (GABA) in serotonergic neurons of the lateral wings of the dorsal raphe. Similar change in transmitter identity was found in the postmortem brains of individuals with posttraumatic stress disorder (PTSD). Overriding the transmitter switch in mice prevented the acquisition of generalized fear. Corticosterone release and activation of glucocorticoid receptors mediated the switch, and prompt antidepressant treatment blocked the cotransmitter switch and generalized fear. Our results provide important insight into the mechanisms involved in fear generalization.


Asunto(s)
Encéfalo , Miedo , Generalización de la Respuesta , Ácido Glutámico , Trastornos por Estrés Postraumático , Estrés Psicológico , Ácido gamma-Aminobutírico , Animales , Ratones , Encéfalo/metabolismo , Miedo/fisiología , Ácido gamma-Aminobutírico/metabolismo , Neuronas/metabolismo , Trastornos por Estrés Postraumático/metabolismo , Estrés Psicológico/metabolismo , Ácido Glutámico/metabolismo , Corticosterona/metabolismo , Receptores de Glucocorticoides/metabolismo , Humanos
9.
Appl Environ Microbiol ; 90(2): e0137423, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38251894

RESUMEN

The acyl-homoserine lactones (AHLs)-mediated LuxI/LuxR quorum sensing (QS) system orchestrates diverse bacterial behaviors in response to changes in population density. The role of the BjaI/BjaR1 QS system in Bradyrhizobium diazoefficiens USDA 110, which shares homology with LuxI/LuxR, remains elusive during symbiotic interaction with soybean. Here this genetic system in wild-type (WT) bacteria residing inside nodules exhibited significantly reduced activity compared to free-living cells, potentially attributed to soybean-mediated suppression. The deletion mutant strain ΔbjaR1 showed significantly enhanced nodulation induction and nitrogen fixation ability. Nevertheless, its ultimate symbiotic outcome (plant dry weight) in soybeans was compromised. Furthermore, comparative analysis of the transcriptome, proteome, and promoter activity revealed that the inactivation of BjaR1 systematically activated and inhibited genomic modules associated with nodulation and nitrogen metabolism. The former appeared to be linked to a significant decrease in the expression of NodD2, a key cell-density-dependent repressor of nodulation genes, while the latter conferred bacterial growth and nitrogen fixation insensitivity to environmental nitrogen. In addition, BjaR1 exerted a positive influence on the transcription of multiple genes involved in a so-called central intermediate metabolism within the nodule. In conclusion, our findings highlight the crucial role of the BjaI/BjaR1 QS circuit in positively regulating bacterial nitrogen metabolism and emphasize the significance of the soybean-mediated suppression of this genetic system for promoting efficient symbiotic nitrogen fixation by B. diazoefficiens.IMPORTANCEThe present study demonstrates, for the first time, that the BjaI/BjaR1 QS system of Bradyrhizobium diazoefficiens has a significant impact on its nodulation and nitrogen fixation capability in soybean by positively regulating NodD2 expression and bacterial nitrogen metabolism. Moreover, it provides novel insights into the importance of suppressing the activity of this QS circuit by the soybean host plant in establishing an efficient mutual relationship between the two symbiotic partners. This research expands our understanding of legumes' role in modulating symbiotic nitrogen fixation through rhizobial QS-mediated metabolic functioning, thereby deepening our comprehension of symbiotic coevolution theory. In addition, these findings may hold great promise for developing quorum quenching technology in agriculture.


Asunto(s)
Bradyrhizobium , Glycine max , Percepción de Quorum/fisiología , Fijación del Nitrógeno , Simbiosis/fisiología , Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Transactivadores/metabolismo , Nitrógeno/metabolismo
10.
Opt Lett ; 49(2): 274-277, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38194546

RESUMEN

X ray ghost imaging (XGI) offers both radiation dose-reduction potential and cost-effective benefits owing to the utilization of a single-pixel detector. Most XGI schemes with laboratory x ray sources require a mechanically moving mask for either structured illumination or structured detection. In either configuration, however, its resolution remains limited by the source size and the unit size of the mask. Upon propagation, the details of the object can actually be magnified by the divergence of x rays, but at the same time, the penumbra effect produced by the finite source size is dramatically intensified, which ultimately leads to a degradation of image quality in XGI. To address these limitations, this work proposes a magnified XGI scheme using structured detection equipped with tapered polycapillary optics, which can efficiently suppress the object's penumbra as well as resolve the magnified details of the object. In general, the resolution of this scheme is no longer affected by the source size but by the microcapillary size of polycapillary. Our work fundamentally achieves cancellation of penumbra effect-induced aberration, thus paving the way for high-resolution magnified XGI.

11.
J Environ Manage ; 347: 119107, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37801947

RESUMEN

Spent selective catalytic reduction (SCR) catalysts are environmentally hazardous and resource-enriching. In this work, V, W, and As in a spent SCR catalyst was extracted by alkali pressure leaching. Results showed that the V, W, and As were loaded on the anatase TiO2 crystal grains as amorphous oxides. The optimum pressure leaching conditions were NaOH concentration of 20 wt%, reaction temperature of 180 °C, reaction time of 120 min, L/S of 10 mL/g, and stirring speed of 300 rpm. The leaching efficiency of W, V, and As reached 98.83%, 100%, and 100%, respectively. The experiment revealed the preferential leaching of V and As rather than W, and the leaching mechanisms of V, W, and As were studied through experiment and density functional theory (DFT). The leaching kinetics of W conformed to a variant of the shrinking core model and the leaching process of W is controlled by both chemical reactions and diffusion processes. During the leaching process, Na2Ti2O4(OH)2 product powder layer was generated, which affects the mass transfer of W. The destruction of the TiO2 skeleton in the spent SCR catalyst is essential for adequate W extraction, especially for the extraction of W embedded in the TiO2 lattice. The DFT simulation result indicated that the V and As loaded onto the TiO2 support are easier to absorb hydroxide ions rather than W, and the leaching reaction energy of V and As was lower than W, As, and V has leaching priority over the leaching of W. Furthermore, an anatase TiO2 photocatalyst with the {001} crystal surface exposed was successfully prepared from the alkali pressure leaching residue. This work provides theoretical support for the metal leaching and utilization of spent SCR catalysts via alkali pressure leaching.


Asunto(s)
Álcalis , Titanio , Álcalis/química , Titanio/química , Metales , Óxidos/química , Catálisis
12.
Chem Commun (Camb) ; 59(70): 10528-10531, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37563975

RESUMEN

1D porous g-C3N4 nanorods were synthesized using chitosan as a template, offering a large surface area and enhanced visible light absorption. These nanorods exhibited a remarkable 8.3-fold increase in H2 generation rate (26.6 µmol h-1) compared to bulk g-C3N4.

13.
ACS Omega ; 8(31): 28122-28132, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37576616

RESUMEN

Phosphogypsum, as a byproduct of wet-process phosphoric acid reaction, has caused many environmental pollution problems. To improve the property and purity of phosphogypsum in the wet-process phosphoric acid process, a liquid-solid-liquid three-phase acid hydrolysis synergistic extraction reaction system was established by adding a certain amount of extractant in the actual production process. In order to study the extraction effect and residue of impurities in the reaction system, the phase, morphology, and impurity occurrences of phosphogypsum were systematically analyzed. The results showed that when the reaction time was 7 h, the reaction temperature was 80 °C, the reaction speed was 200 r/min, the volume ratio of the extractant to diluent (dilution ratio) was 1:4 and the volume ratio of the oil phase/aqueous phase (O/A ratio) was 1:1, P2O5 conversion was the highest in phosphate rock, and the residual P2O5 content in phosphogypsum was as low as 0.36%. The morphology of the phosphogypsum crystal was uniform and coarse long strip. The main forms of residual impurities were silicate, aluminum fluoride with crystal water, aluminate, phosphate, and fluoride. Meanwhile, the residual amount of main impurities in phosphogypsum was significantly reduced. Through this novel method, the property of phosphogypsum can be improved through the generation process and is greatly beneficial for its utilization and the recycling development of the wet-process phosphoric acid industry.

14.
bioRxiv ; 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37214936

RESUMEN

Overgeneralization of fear to harmless situations is a core feature of anxiety disorders resulting from acute stress, yet the mechanisms by which fear becomes generalized are poorly understood. Here we show that generalized fear in mice in response to footshock results from a transmitter switch from glutamate to GABA in serotonergic neurons of the lateral wings of the dorsal raphe. We observe a similar change in transmitter identity in the postmortem brains of PTSD patients. Overriding the transmitter switch in mice using viral tools prevents the acquisition of generalized fear. Corticosterone release and activation of glucocorticoid receptors trigger the switch, and prompt antidepressant treatment blocks the co-transmitter switch and generalized fear. Our results provide new understanding of the plasticity involved in fear generalization.

15.
Small ; 19(33): e2301017, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37066713

RESUMEN

Semiconductor-based heterostructures have exhibited great promise as a photocatalyst to convert solar energy into sustainable chemical fuels, however, their solar-to-fuel efficiency is largely restricted by insufficient interfacial charge separation and limited catalytically active sites. Here the integration of high-efficiency interfacial charge separation and sufficient single-atom metal active sites in a 2D van der Waals (vdW) heterostructure between ultrathin polymeric carbon nitride (p-CN) and Ni-containing Salphen-based covalent organic framework (Ni-COF) nanosheets is illustrated. The results reveal a NiN2 O2 chemical bonding in NiCOF nanosheets, leading to a highly separated single-atom Ni sites, which will function as the catalytically active sites to boost solar fuel production, as confirmed by X-ray absorption spectra and density functional theory calculations. Using ultrafast femtosecond transient adsorption (fs-TA) spectra, it shows that the vdW p-CN/Ni-COF heterostructure exhibits a faster decay lifetime of the exciton annihilation (τ = 18.3 ps) compared to that of neat p-CN (32.6 ps), illustrating an efficiently accelerated electron transfer across the vdW heterointerface from p-CN to Ni-COF, which thus allows more active electrons available to participate in the subsequent reduction reactions. The photocatalytic results offer a chemical fuel generation rate of 2.29 mmol g-1 h-1 for H2 and 6.2 µmol g-1 h-1 for CO, ≈127 and three times higher than that of neat p-CN, respectively. This work provides new insights into the construction of a π-conjugated vdW heterostructure on promoting interfacial charge separation for high-efficiency photocatalysis.

16.
Small ; 19(18): e2207173, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36740721

RESUMEN

The relatively short-lived excited states, such as the nascent electron-hole pairs (excitons) and the shallow trapping states, in semiconductor-based photocatalysts produce an exceptionally high charge carrier recombination rate, dominating a low solar-to-fuel performance. Here, a π-conjugated in-plane heterostructure between graphitic carbon nitride (g-CN) and carbon rings (Crings ) (labeling g-CN/Crings ) is effectively synthesized from the thermolysis of melamine-citric acid aggregates via a microwave-assisted heating process. The g-CN/Crings in-plane heterostructure shows remarkably suppressed excited-state decay and increased charge carrier population in photocatalysis. Kinetics analysis from the femtosecond time-resolved transient absorption spectroscopy illustrates that the g-CN/Crings π-conjugated heterostructure produces slower exciton annihilation (τ1  = 7.9 ps) and longer shallow electron trapping (τ2  = 407.1 ps) than pristine g-CN (τ1  = 3.6 ps, τ2  = 264.1 ps) owing to Crings incorporation, both of which enable more photoinduced electrons to participate in the photocatalytic reactions, thereby realizing photoactivity enhancement. As a result, the photocatalytic activity exhibits an eightfold enhancement in visible-light-driven H2 generation. This work provides a viable route of constructing π-conjugated in-plane heterostructures to suppress the excited-state decay and improve the photocatalytic performance.

17.
Heliyon ; 9(1): e12893, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36691546

RESUMEN

Secondary aluminum dross (SAD) refers to hazardous waste from secondary aluminum refinement. It contains a large amount of aluminum nitride and fluorides that cause serious environmental pollution for direct discharge and hinder the resource utilization of SAD. However, it is difficult to remove nitride and fluoride simultaneously for their complicated phases. In this paper, the catalytic hydrolysis of SAD using NaOH as a catalyst to remove nitrides and fluorides synchronously was investigated systemically through single factor and response surface experiments. In addition, the chemical speciation and transformation of nitrides and fluorides were analyzed systematically. The catalytic hydrolysis removal mechanism was summarized. The optimal conditions for catalytic hydrolysis were established as follows: reaction temperature 96.60 °C; reaction time 2.85 h; liquid-solid ratio 9.28 mL/g and catalyst addition 12.62 wt %; and removal efficiency of nitrides and fluorides reached 99.03% and 81.93%, respectively. The mechanism of nitrides removal was that aluminum nitride was hydrolyzed to Al(OH)3 and NH3. NaOH reacting with Al(OH)3 covering on the surface of AlN and the rapid escape of NH3 promoted the hydrolysis of AlN under the catalysis of NaOH. The mechanism of fluorides removal was that the encapsulated fluoride particles were opened by catalytic hydrolysis to be dissolved in the solution. In this research, nitrides and fluorides were removed efficiently and synchronously. The hydrolysis residues can be used to prepare polyaluminum chloride (PAC) and ceramic materials. The hydrolysate can be prepared NH3·H2O by evaporative in alkaline solution. Then the solution without NH4 + was prepared Al(OH)3 by precipitation of adjusting pH value using HCl. And the remained liquid after removing NaAlO2 was used to prepare refining agent by evaporative crystallization. The work in this paper was beneficial for the utilization of SAD.

18.
Materials (Basel) ; 16(2)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36676390

RESUMEN

Mullite-cordierite ceramic saggar is a necessary consumable material used in the synthesis process of LiCoO2 that is easily eroded during application. In our study, we systematically investigated the characteristics and surface corrosion behavior of waste saggar samples. We divided the cross sections of waste saggar into the attached layer, hardened layer, permeability layer, and matrix layer. Then, we examined the high-temperature solid-state reactions between saggar powder and lithium carbonate or cobalt oxide to identify erosion reactants correlating with an increase in the number of recycled saggars. The results of time-of-flight secondary ion mass spectrometric analysis (TOF-SIMS) prove that the maximum erosion penetration of lithium can reach 2 mm. However, our morphology and elemental distribution analysis results show that the erosion penetration of cobalt was only 200 µm. When enough lithium carbonate reacted, lithium aluminate and lithium silicate were the main phases. Our X-ray computed tomography (X-ray CT) analysis results show that the change in phase volume before and after the reaction, including the generation of oxygen and carbon dioxide gas, led to the internal crack expansion of the material-saggar interface. Our results can contribute to improving saggar and upgrading waste saggar utilization technology.

19.
RSC Adv ; 13(3): 2024-2035, 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36712606

RESUMEN

Developing efficient and green catalytic systems is highly desired in the syntheses of alicyclic amines via hydrogenation of nitroaromatics. Herein, we developed Ru-Pd dual active site catalysts in which Ru and Pd species were anchored and highly dispersed on air-exfoliated carbon nitride (Ru-Pd/C3N4-air). As-prepared catalysts were employed in the hydrogenation of nitrobenzene (NB) to cyclohexylamine (CHA). Compared with single Ru or Pd based catalysts, Ru-Pd dual active site catalysts obtained a higher CHA production rate of 26.7 mol CHA mol-1 Ru·Pd h-1 at 80 °C and 3 MPa H2. The activation energy for the hydrogenation of the nitro group and benzene ring was calculated as 26.26 kJ mol-1 and 66.30 kJ mol-1, respectively. Intrinsic kinetic studies demonstrated that Pd was the dominant metal for hydrogenation of nitro group, while Ru was dominant for benzene ring. Thereinto, the corresponding non-dominant metals enhanced activation and dissociation of H2, thereby improving catalytic activity significantly. This excellent performance of Ru-Pd catalysts could be attributed to highly dispersed Ru-N x and Pd-N x at a nanoscale distance, which was conducive to metal-assisted hydrogenation. Stability investigation showed that the performance of Ru-Pd catalysts could be essentially maintained at a high level. Additionally, the substrate scope could be successfully extended to hydrogenation of other nitroaromatics with different substituents.

20.
Waste Manag ; 155: 338-347, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36417815

RESUMEN

The widespread use of selective catalytic reduction (SCR) catalysts has resulted in a large accumulation of spent SCR catalysts. These spent catalysts present a significant risk of environmental hazards and potential for resource recovery. This paper presents a feasible process, which works using atmospheric pressure leaching, of tungsten and titanium recovery from spent SCR catalysts. In this new method, titanium and tungsten are simultaneously leached with sulfuric acid as the leaching agent. After hydrolysis and calcination, titanium-tungsten powder with low impurity and reconstructed pore properties was obtained. The optimal conditions for the leaching of Ti and W were as follows: temperature, 150 °C; reaction time, 60 min; H2SO4 concentration, 80 %; mass ratio of H2SO4/TiO2, 3:1; and diluted H2SO4 concentration, 20 % after reaction. With these optimum conditions, the leaching efficiency of Ti and W were found to be 95.92 % and 93.83 %, respectively. The ion speciation and reaction mechanism of W were studied by Raman spectroscopy, FTIR, and UV-vis. The formation of heteropolytungstate with a Keggin structure is essential for the synergistic leaching of Ti and W, as the heteropolytungstate can be stably dissolved in the acid solution. During the hydrolysis process, heteropolytungstate gradually decomposed into Ti4+ and WO42- due to the formation of insoluble Ti(OH)4 from Ti4+ in the solution. This study demonstrated an effective method for synergistic recovery of titanium and tungsten from the spent SCR catalyst.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...